Cours Limites de fonctions trigonométriques
Calculs de limites de fonctions trigonométriques
Lancer le programme
Accède gratuitement à cette vidéo pendant 7 jours Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Fiche de cours

Calculs de limites de fonctions trigonométriques

 

Limites au voisinage de l'infini

 

Les fonctions cosinus et sinus n'ont pas de limite en $+\infty$ ni en $-\infty$.

limites_sinus_et_cosinus_infini

 

Cependant, on peut comparer leurs croissances aux puissances de $x$ :

$\displaystyle \lim_{x\to \pm \infty} \dfrac{\cos(x)}{x^n}=0$ avec $n\in \mathbb{N}^\star$

$\displaystyle \lim_{x\to \pm \infty} \dfrac{\sin(x)}{x^n}=0$ avec $n\in\mathbb{N}^\star$

Ces résultats s'obtiennent très facilement avec le théorème des gendarmes

 

Limite en $0$


En faisant apparaître un taux de variation, on montre que :

${\displaystyle\lim_{x\to 0}\dfrac{\sin(x)}{x}=1}$

Preuve :

$\displaystyle\lim_{x\to 0} \dfrac{\sin(x)}{x}=\lim_{x\to 0}\dfrac{\sin(x)-\sin(0)}{x-0} =\sin'(0) = \cos(0) = 1$


Exemple


Calculer la limite en $0$ de la fonction $f(x)=\dfrac{\sin(4x)}{x}$.

 

Il s'agit ici de faire apparaître un taux de variation pour pouvoir calculer cette limite qui est une forme indéterminée du type : $\dfrac00$.

Pour cela, on écrit $f(x) = 4 \times \dfrac{\s

Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.