Cours Stage - Études de fonctions trigonométriques

Étude de la fonction sinus

Accède gratuitement à cette vidéo pendant 7 jours Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Fiche de cours

Etude de la fonction sinus

 

Domaine de définition et dérivée

 

La fonction sinus est définie sur $\mathbb{R}$.

Elle est impaire (pour tout $x\in\mathbb{R}, \sin(-x)=-\sin(x)$) et $2\pi$-périodique (pour tout $x\in\mathbb{R}, \sin(x+2\pi)=\sin(x)$) ce qui permet de restreindre son étude à $[0,\pi]$.

Son domaine de dérivabilité est $\mathbb{R}$ et pour tout $x\in\mathbb{R}, \sin'(x)=\cos(x)$.

 

Variations sur $[0,\pi]$

 

Pour étudier les variations de la fonction sinus, on étudie le signe de sa dérivée c'est-à-dire le signe de $\cos(x)$ sur $[0,\pi]$.

variations_sinus

Représentation graphique

 

Courbe représentative de la fonction sinus obtenue avec les propriétés de parité et de périodicité de la fonction :

sinus-graphique

 

Propriétés algébriques et autres formules

 

Pour tout $x\in\mathbb{R}$, $\cos^2(x)+\sin^2(x)=1$.

Pour tout $x\in\mathbb{R}$, $\s

Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.