1
Video
Calculs d'intégrales
2
Exercice
QCM - Calculs d'intégrales
3
Video
Propriétés de l'intégrale
4
Video
Relation de Chasles
5
Exercice
Exercice - Calculs d'intégrales simples
6
Video
Calculs d'intégrales - Exercice
7
Exercice
Calcul d'intégrale de fonctions simples
8
Video
Valeur moyenne d'une fonction
9
Exercice
QCM - Valeur moyenne d’une fonction
Accède gratuitement à cette vidéo pendant 7 jours
Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !
Fiche de cours
Valeur moyenne d'une fonction
Définition
Soient $a$ et $b$ deux réels tels que $a < b$ et \(f\) est continue sur \([a,b]\).
On appelle valeur moyenne de \(f\) sur \([a,b]\), le nombre réel $\mu$ défini par :
\( \displaystyle \mu = \frac{1}{b-a} \int_{a}^b f(t)dt\)
Interprétation graphique
On peut déterminer la valeur de l'intégrale de $f$ en effectuant le produit en croix:
\( \displaystyle \mu (b-a)= \int_{a}^b f(t)dt = \mathcal{A}\)
Voici l'exemple de la fonction $f(x)=0,25x^2-1$ sur l'intervalle $[-3;7]$