Première > Mathématiques > Raisonnement mathématique > Raisonnement mathématique

RAISONNEMENT MATHÉMATIQUE

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Raisonnement par l'absurde

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Raisonnement par l'absurde

 

Principe :

Pour montrer qu'une proposition est vraie, on peut supposer qu'elle est fausse et montrer que l'on arrive alors à une contradiction, c'est à dire une incohérence. 

 

Exemple

On souhaite démonter que "Zéro n'admet pas d'inverse". 

Pour rappel, l'inverse d'un nombre $a$ est le nombre $b$ tel que $a \times b = 1$. 

 

Débutons notre raisonnement par l'absurde en supposant que $0$ ait un inverse.

Il existe alors un nombre $a$ tel que

$a \times 0 = 1$. 

Or $0 + 0 = 0$

On peut donc écrire que $a \times (0 + 0)  = 1$.

On obtient alors l'

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.