Première > Mathématiques > Sujets contrôle continu > Probabilités conditionnelles

PROBABILITÉS CONDITIONNELLES

Exercice d'application


Mathématiques

  • Une compagnie d’assurance auto propose deux types de contrat :

    – un contrat « Tous risques » dont le montant annuel est de 500 € ;

    – un contrat « de base » dont le montant annuel est de 400 €.

    En consultant le fichier clients de la compagnie, on recueille les données suivantes :

    – 60% des clients possèdent un véhicule récent (moins de 5 ans). Les autres clients ont un véhicule ancien ;

    – parmi les clients possédant un véhicule récent, 70% ont souscrit au contrat « Tous risques » ;

    – parmi les clients possédant un véhicule ancien, 50% ont souscrit au contrat « Tous risques ».

     

    On considère un client choisi au hasard. D’une manière générale, la probabilité d’un événement $A$ est notée $P(A)$ et son événement contraire est noté $\bar{A}$.

    On note les événements suivants :

    $R$: « le client possède un véhicule récent » ;

    $T$ : « le client a souscrit au contrat « Tous risques ».

     

    Capture_d’écran_2020-03-06_à_09.37.21

    On note  $X$ a variable aléatoire qui donne le montant du contrat souscrit par un client.

     

    1. Recopier et compléter l’arbre pondéré de probabilité traduisant les données de l’exercice.

    2. Calculer la probabilité qu’un client pris au hasard possède un véhicule récent et ait souscrit au contrat « Tous risques », c’est-à-dire calculer $P(R\cap T)$.

    3. Montrer que $P(T)=0,62$.

    4. La variable aléatoire $X$ ne prend que deux valeurs $a$ et $b$. Déterminer ces deux valeurs, les probabilités $P(X=a)$  et $P(X=b)$, puis l’espérance de $X$.

La correction et les astuces de cet exercice t'intéressent ?

Accède librement à l'ensemble des contenus, aux astuces et aux corrections des exercices en t'abonnant sur Les Bons Profs. Clique ici pour démarrer l'abonnement.