Seconde Générale > Mathématiques > Calcul littéral > Développer, identitiés remarquables

DÉVELOPPER, IDENTITIÉS REMARQUABLES (Accès libre)

DOUBLE DISTRIBUTIVITÉ

Permalien

Télécharger la fiche de cours

Double distributivité

 

La formule de la double distributivité est la suivante :

$(a+b)(c+d)=ac+ad+bc+bd$

 

Exemples : 

a) Développer $(x + 2)(3x + 4)$. 

On applique la formule avec $a = x, b = 2, c = 3x$ et $d = 4$. 

Ainsi, $(x + 2)(3x + 4) = x \times 3x + x \times 4 + 2 \times 3x + 2 \times 4 = 3x^2 + 4x + 6x + 8$.

La dernière étape du calcul consiste à regarder si il est possible d'effectuer une réduction, en regroupant les termes semblables.

Finalement, $(x + 2)(3x + 4) = 3x^2 + 10x + 8$. 

 

b) Développer $(5x - 7)(6 - 2x)$. 

L'astuce consiste à réécrire, lorsque l'on débute, le produit sous la forme $(5x - 7)(6 - 2x) = (5x + (- 7))(6 +  (- 2x))$.

Ainsi, on applique la formule avec $a = 5x, b = -7, c = 6$ et $d = -2x$. 

On trouve alors que $(5x + (- 7))(6 +  (- 2x)) = 30x - 10x^2 + - 42 + 14x = -10x^2 + 44x - 42$. 

 

c) Développer $(1 + y)(2y - 3)$

$(1 + y)(2y - 3) = 2y - 3 + 2y^2 -3y = 2y^2 - y -3$.