Seconde Générale > Mathématiques > Vecteurs, coordonnées > Déterminant de deux vecteurs

DÉTERMINANT DE DEUX VECTEURS

Tu dois disposer d'un abonnement
pour regarder la vidéo

L'abonnement aux Bons Profs permet de profiter de toutes les vidéos de rappels de cours dans toutes les matières de la 6e à la Terminale.

Ces vidéos sont présentées par des professeurs de l'Education nationale et permettent de revoir en quelques minutes toutes les notions du cours.

Demande à tes parents de te créer un compte. C'est très simple et tu pourras démarrer tes révisions immédiatement.

DÉTERMINANT DE DEUX VECTEURS, CRITÈRE DE COLINÉARITÉ

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Déterminant de deux vecteurs - Critère de colinéarité

 

I) Déterminant de deux vecteurs dans une base orthonormée 

 

Définition :

Soit $(\overrightarrow{i}, \overrightarrow{j})$ une base orthonormée,

Soient $\overrightarrow{u} \left ( \begin{array}{c} x_1 \\ y_1 \end{array} \right )$ et $\overrightarrow{v} \left ( \begin{array}{c} x_2 \\ y_2 \end{array} \right )$ deux vecteurs exprimés dans cette base,

On appelle déterminant des deux vecteurs $\overrightarrow{u}$ et $\overrightarrow{v}$ le réel $x_1y_2 - y_1x_2$.

On note $Det(\overrightarrow{u}, \overrightarrow{v}) = \left | \begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array} \right | = x_1y_2 - y_1x_2$

 

Exemples :

$Det(\overrightarrow{i}, \overrightarrow{i}) = \left | \begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right | = 1 \times 0 - 0 \times 1 = 0$

$Det(\overrightarrow{i}, \overrightarrow{j}) = \left | \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right | = 1 \times 1 - 0 \times 0 = 1$

 

II) Colinéarité de deux vecteurs

 

Définition :

Deux vecteurs non nuls $\overrightarrow{u}$ et $\overrightarrow{v}$ sont colinéaires signifie qu'il existe un réel $k$ tel que  $\overrightarrow{u} = k\overrightarrow{v}$.

Si $k>0$, les vecteurs ont le même sens, si $k<0$ les vecteurs sont de sens opposé. 

Exemple avec $k=-3$

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.