Seconde > Mathématiques > Équations de droites > L'incontournable du chapitre

L'INCONTOURNABLE DU CHAPITRE

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Tracer des droites d'équations données

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Tracer des droites d'équations données

 

On souhaite tracer les équations de droites suivantes :

$d_1 : y = -2 \\
d_2 : x = 3 \\
d_3 : y = -\dfrac{1}{3}x + 2 \\
d_4 : y = 2x - 2$

$(d_1)$ est une droite horizontale, de coefficient directeur nul. On trace donc la droite parallèle à l'axe des abscisses passant par le point $(0; -2)$. 

$(d_2)$ est une droite verticale, parallèle à l'axe des ordonnées et passant par le point de coordonnées $(3; 0)$.

Pour tracer les droites $(d_3)$ et $(d_4)$, il existe deux méthodes.

La première consiste à dresser un tableau de valeurs, en général on prendra 3 points. 2 points suffisent pour tracer une droite, mais il est bon de prendre la précaution d'en placer 3 pour éviter les erreurs.

On choisit donc différentes valeurs de $x$ et on remplace ces valeurs dans l'équation de la droite $(d_3)$ pour obtenir la valeur de $y$ correspondante. 
On peut aussi remarquer que le coefficient directeur vaut $-\dfrac{1}{3}$, ainsi en prenant des valeurs de $x$ multiples de 3, on trouve des valeurs de $y$ entières. 

$x$ $-3$ $0$ $3$
$y$ $3$ $2$ $1$

Le coefficient directeur étant un nombre négatif, la droite "descend". 

 

Pour tracer la droite $(d_4)$, on utilise la seconde méthode. 

On utilise l'ordonnée à l'origine qui vaut $-2$. Le point $(0; -2)$ appartient donc à la droite. 

On utilise ensuite le coefficient directeur : on se déplace d'une unité vers la droite depuis l'ordonnée à l'origine puis on se déplace verticalement avec un nombre d'unités égale au coefficient directeur (on se déplacera vers le haut pour un coefficient positif et vers le bas pour un coefficient négatif).

Ici, on se déplace de deux unités vers le haut.

On obtient ainsi un second point appartenant à la droite, en reliant ces deux points on obtient donc la droite  $(d_4)$. 

748499f13608312f822d704981c8bcf5bc01bb35.png