Terminale Economique et Sociale > Mathématiques > Lois de probabilité continues > Lois de probabilité continues, lois uniformes

LOIS DE PROBABILITÉ CONTINUES, LOIS UNIFORMES

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

LOI UNIFORME SUR [A ; B]

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Loi uniforme sur un intervalle $[a;b]$



Définition

 

$X$, une variable aléatoire suit une loi uniforme sur $[a;b]$ si et seulement si la fonction de densité de probabilité est :

\( \displaystyle f(x)=\frac{1}{b-a}\).

On vérifie que  \( \displaystyle \int \limits_a^{b}f(x)dx=1\).

 

Propriétés

 

Pour tout intervalle $[c;d]$ inclus dans $[a;b]$, on a:

\( \displaystyle P(c\leqslant X \leqslant d)=\frac{d-c}{b-a}\).

 

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.