Terminale Economique et Sociale > Mathématiques > Primitives et calcul intégral > Annale - Exponentielle et intégrale

ANNALE - EXPONENTIELLE ET INTÉGRALE

Tu dois disposer d'un abonnement
pour regarder la vidéo

L'abonnement aux Bons Profs permet de profiter de toutes les vidéos de rappels de cours dans toutes les matières de la 6e à la Terminale.

Ces vidéos sont présentées par des professeurs de l'Education nationale et permettent de revoir en quelques minutes toutes les notions du cours.

Demande à tes parents de te créer un compte. C'est très simple et tu pourras démarrer tes révisions immédiatement.

FONCTIONS COMPOSÉES - EXP(U(X)X)

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Fonctions composées


Soit $u(x)$ une fonction continue et dérivable sur $\mathbb{R}$, la fonction $f(x)=e^{u(x)}$ a pour dérivée

$f'(x)=u'(x)e^{u(x)}$.


Exemple


Soit $g$ la fonction définie et dérivable sur $\mathbb{R}$ par : $g(x)=e^{(-3x^2+x)}$. Déterminons sa dérivée.

On pose : $u(x)= -3x^2+x$. On a donc : $u'(x)=-6x+1$.

On a : $g'(x)= u'(x)e^{u(x)}$.

Soit : $g'(x)=(-6x+1)e^{(-3x^2+x)}$.

 

Autre exemple

Etudier les variations de la fonction $f(x)$= $\displaystyle \frac{3e^x}{e^{2x}+1}$.

 

étape 1 : On cherche toujours l'ensemble de définition d'une fonction.

$Df= \mathbb{R} $ car $e^{2x}$ ne peut

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.