Terminale Economique et Sociale > Mathématiques > Primitives et calcul intégral > L'incontournable du chapitre

L'INCONTOURNABLE DU CHAPITRE

Tu dois disposer d'un abonnement
pour regarder la vidéo

L'abonnement aux Bons Profs permet de profiter de toutes les vidéos de rappels de cours dans toutes les matières de la 6e à la Terminale.

Ces vidéos sont présentées par des professeurs de l'Education nationale et permettent de revoir en quelques minutes toutes les notions du cours.

Demande à tes parents de te créer un compte. C'est très simple et tu pourras démarrer tes révisions immédiatement.

DÉFINITION DE L'INTÉGRALE

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Définition de l'intégrale



Définition

 

Soit (O,$\overrightarrow {i}$,$\overrightarrow {j}$) un repère orthonormé et une fonction $f$ continue et positive sur un intervalle $[a,b]$.

$\mathcal{D}$ est le domaine du plan délimité par $x$=$a$  ,   $x$=$b$, l'axe des abscisses et $\mathcal{C}_f$, la courbe représentative de la fonction $f$.

L'intégrale de $f$ sur $[a,b]$ notée $ \displaystyle \int \limits_a^b f (t)dt$ est l'aire $\mathcal{A}$ du domaine $\mathcal{D}$ exprimée en unités d'aire.

definition_integrale<

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.