Terminale Scientifique > Mathématiques > Arithmétique > Équations diophantiennes

ÉQUATIONS DIOPHANTIENNES

ÉQUATIONS DIOPHANTIENNES

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Equation Diophantienne

 

Définition

Une équation diophantienne est une équation algébrique de la forme $ax+by=c$ (E) avec $a$, $b$ et $c$ entiers ($a$ et $b$ non nuls).

On cherche des couples $(x;y)$ d'entiers solutions.


Existence de solutions

(E) admet des solutions $\iff$ $PGCD(a,b)$ divise $c$

Dans l'équation suivante : (E) $4x-2y=1$, on a : $PGCD(4;2)=2$ 

Or, 2 ne divise pas 1 donc l'équation n'a pas de solutions.

 

Exemple

Résoudre $41x-27y=1$   (E) dans $\mathbb{Z}^2$.

 

étape 1 : On cherche le $PGCD$ des nombres du membre de gauche. On effectue l'algorithme d'Euclide.

$41=27 \times 1 + 14 $ 
$27= 14 \times 1 + 13$ 

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.