Troisième Générale > Mathématiques > Fonctions > Fonctions, image, antécédent

FONCTIONS, IMAGE, ANTÉCÉDENT (Accès libre)

Image d'un nombre par une fonction

Permalien

Télécharger la fiche de cours

Image d'un nombre par une fonction

 

Notion intuitive d'image

 

Considérons la courbe de température suivante :

-576

L'ensemble de définition de la fonction est $[0, 24]$, c'est à dire que l'étude se fait sur une journée complète à partir de minuit. 

L'ordonnée est la température, il s'agit donc de la représentation graphique de la température en fonction du temps.

Ainsi, le temps est sur l'axe des abscisses. 

 

Question : quelle température faisait-il à 3h du matin ?

On lit graphiquement que la température à 3h du matin est 9°C. 

Ainsi, on dira que l'image de 3 par la fonction $f$ vaut 9 : il n'y a plus d'unité. On notera aussi $f(3) = 9$

 

Définition

 

Soit $f$ une fonction et $a$ et $b$ deux réels vérifiants $f(a)=b$.

On dit que $b$ est l'image de $a$ par $f$.

Ou encore :  l'image de $a$ par $f$ vaut $b$.

 

Autre exemple :

Pour trouver l'image de 15, on se place sur l'axe des abscisses à $t = 15$ puis on trace la droite perpendiculaire à cet axe et on regarde l'ordonnée du point d'intersection entre cette droite et la courbe de $f$ :

On lit $f(15) = 15$.