MATHÉMATIQUES


Étude de la continuité d'une fonction

 

On souhaite étudier la continuité de la fonction définie par $f(x) = \left \{ \begin{array}{l} -x + 2 \text{ si } x \leq -1 \\ x + 4 \text{ si } -1 < x \leq 1 \\ -x + 4 \text{ si } 1 < x \leq 5 \end{array} \right.$. 

Il s'agit d'une fonction définie par morceaux car elle est définie sur différents intervalles. 

On trace la fonction sur les différents intervalles. 

On peut calculer l'image de $-1$ par la fonction $f$ sur l'intervalle $]-\infty, -1]$, on a ainsi $f(-1) = 3$.

On calcule également $f(-3) = 5$.

Comme $f$ est une fonction affine sur cet intervalle, on relit les deux points pour former une demi droite, car on s'arrête en $x = -1$, la formule $f(x) = -x + 2$ n'est vraie que pour $x \leq -1$.

 

On trace ensuite la fonction $f$ sur l'interv

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.