MATHÉMATIQUES

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe
avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit


Trigonométrie : Formules d'additions

 

Dans ce qui suit, $a$ et $b$ sont deux réels. 

 

$\left \{ \begin{array}{l} \cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b) \\ \cos(a - b) = \cos(a) \cos(b) + \sin(a) \sin(b) \\ \end{array} \right.$

Les formules précédentes peuvent être démontrées à partir du produit scalaire

 

$\left \{ \begin{array}{l} \sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b) \\ \sin(a - b) = \sin(a) \cos(b) - \cos(a) \sin(b) \\ \end{array} \right.$

 

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.