MATHÉMATIQUES


Inéquations produit

 

On souhaite résoudre l'inéquation suivante $(2x + 1)(1 - 3x) \geq 0$. 

 

Il est bon de s'interroger sur l'existence d'une solution. 

Si le premier facteur est positif, ainsi que le second, alors par produit, le résultat est positif.

De même, si le premier facteur est négatif, ainsi que le second, alors par produit, le résultat est positif.

Néanmoins, si les deux facteurs n'ont pas le même signe, il n'existe pas de solution. 

On étudie donc le signe de chaque facteur en fonction de $x$. 

 

On cherche donc tout d'abord pour quels $x$ le facteur $2x + 1$ est positif ou nul, ou encore, on veut résoudre $2x + 1 \geq 0$. 

Cela revient à écrire que $2x \geq -1$ ou encore $x \geq \dfrac{-1}{2}$. Ainsi, si $x \geq \dfrac{-1}{2}$, on a $2x + 1 \geq 0$. 

De même, on veut r&eac

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.