Fractions décimales

Fractions décimales

 

Définition

 

Une fraction décimale est une fraction dont le dénominateur est 1 ; 10 ; 100 ; 1000…

 

Exemples : 

$\dfrac{45}{100}$   ;  $\dfrac{4}{1000}$  ;  $\dfrac{25}{1}$  et  $\dfrac{7}{10}$  sont des fractions décimales.

$\dfrac{4}{7}$ n’est pas une fraction décimale.

 

Propriété

 

Tout nombre décimal peut s’écrire sous la forme :

  • d’une fraction décimale,
  • de la somme de fractions décimales,
  • de la somme d’un nombre entier et d’une ou plusieurs fractions décimales (ce sont des « décompositions décimales »).

 

Exemples :

$\dfrac{6}{10}=0,6$

On lit « 6 dixièmes » et 6 est bien le chiffre des dixièmes dans $0,6$.

(  $0,6$ a un chiffre après la virgule et $10$ a un zéro).

 

$\dfrac{3507}{1000}=3,507$

On lit « 3 507 millièmes » et 7 est bien le chiffre des millièmes dans  $3,507$.

($3,507$ a trois chiffres après la virgule et $1000$ a trois zéros)

 

On peut aussi écrire : 

$\dfrac{3507}{1000}=\dfrac{3}{1}+\dfrac{5}{10}+\dfrac{0}{100}+\dfrac{7}{1000}$

Ou encore : 

$\dfrac{3507}{1000}=\dfrac{3}{1}+\dfrac{507}{1000}$

 

Attention : un même nombre décimal est égal à plusieurs fractions décimales.

$3,507=\dfrac{3507}{1000}=\dfrac{35070}{10000}=\dfrac{350700}{100000}$

(En effet 3,507=3,5070=3,50700)

 

Commentaire : Pour bien comprendre cette fiche il faut déjà être à l’aise avec la notion de nombre décimal ainsi qu’avec le nom et le rôle de chaque chiffre (dixième, centième…)

Notre guide gratuit pour faire les bons choix de spécialités au lycée en 2023 est sorti !

X