MATHÉMATIQUES

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe
avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit


Tangente à une courbe en un point

 

Soit $f$ une fonction définie sur $I$ et $a \in I$, 

La limite du taux d'accroissement en un point $a$ lorsqu'elle existe donne le nombre dérivée de la fonction $f$ en $a$ :

$\lim \limits_{h \to 0} \dfrac{f(a+h) - f(a)}{h} = f'(a)$.

 

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.