I. Modèle ondulatoire
Dans ce modèle, la lumière est une onde, elle peut se réfléchir, se transmettre. La lumière visible est une onde électromagnétique, mais une partie seulement du spectre des ondes électromagnétiques.

Une onde est caractérisée par sa fréquence $f$ (en Hz) ou sa longueur d’onde $\lambda$ (en m). Une formule relie ces deux grandeurs :
$f=\dfrac{c}{\lambda}$ où $c$ est la célérité de la lumière et vaut $c =3 \times 10^8 m.s^{-1}$.
Exemples :
Pour $\lambda = 400nm$ (bleu voilet) on a $f=7,5 10^{14}Hz$
Pour $\lambda = 800nm$ (rouge) on a $f=3,8 10^{14}Hz$
La fréquence et la longueur d’onde sont inverses l’une de l’autre : quand $f$ est grand, $\lambda$ est petit et inversement.
II. Modèle corpusculaire
Dans ce modèle la lumière est un ensemble de photons. Chaque photon possède une énergie qui vaut $E_{photon}= h \times f = h \times \dfrac{c}{\lambda}$.
$h$ est la constante de Planck et vaut $h=6,63 10^{-34}J.s$
Application numérique :
Pour $\lambda = 400nm$ on a $E_{photon,\ 400nm}= 6,63 \times 10^{34} \times \dfrac{3,0 \times 10^8}{400 \times 10^{-9}}=4,97 10^{-19}J$
L’électron-volt
On peut convertir les Joules en électron-volt, c’est une unité énergétique :
$1eV = 1,6 \times 10^{-19} J.$
Ainsi on a, $E_{photon,400nm}=3,1eV$ ce qui est plus agréable à manipuler.