Terminale > Mathématiques > Matrices > Matrice inverse

MATRICE INVERSE

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Matrice inverse

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Matrice inverse

 

Définition

 

Soit $A$ une matrice carrée d'ordre $n$. On note $ I_n$ la matrice unité d'ordre $n$.

S'il existe une matrice $B$ tel que :

$A \times B= B \times A= I_n$,

Alors $A$ est inversible et sa matrice inverse est $B=A^{-1}$.

 

Propriété

 

 Soit $A =\begin{pmatrix}
a & b \\
c & d\\
\end{pmatrix}$ une matrice carré d'ordre $2$


Si $ad-bc \neq 0$ alors $A$ est inversible et sa matrice inverse $A^{-1}$ vaut :

$A^{-1} =  \displaystyle\frac{1}{ad-bc} \begin{pmatrix}
d & -b \\
-c & a\\
\end{pmatrix}$

 

Exemple

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.