Cours Stage - Définition de la fonction exponentielle

La fonction exponentielle

Accède gratuitement à cette vidéo pendant 7 jours Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Fiche de cours

La fonction exponentielle 

 

Définition

 

Il existe une unique fonction $f$ dérivable sur $\mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, on a

$\left \{ \begin{array}{l} f'(x) = f(x) \\ f(0) = 1 \\ \end{array} \right.$

Cette fonction est appelée la fonction exponentielle, et est égale à sa dérivée.

On note cette fonction $f(x) = \exp(x)$. 
Ainsi, $f'(x) = \exp(x)$. 

 

Propriétés

 

Pour tout $x \in \mathbb{R}$, $\exp(x) > 0$.

On sait aussi que $\exp(0) = 1$ donc $f'(0) = 1$.

Cela permet donc d'écrire l'équation de la tangente à la courbe au point d'abscisse $0$ :

$T_0 : y = f'(0)(x - 0) + f(0) = x + 1$. 

 

Application à la dérivation

Soit $f$ une fonction définie pour tout réel $x$ par $f(x) = x \exp(x)$. 

On pose $u(x) = x$ et $v(x) = \exp(x)$. 

On a alors $u'(x) = 1$ et $v'(x) = v(x) = \exp(x)$.

Ainsi, $f'(x) = u'(x)\times v(x) + u(x) \times v'(x)$. 

Donc $f'(x) = 1 \times \exp(x) + x \times \exp(x) = (x + 1) \exp(x)$. 

On préfèrera écrire la dérivée sous la forme d'un produit, pour faciliter le calcul de son signe. 

 

Propri&eac

Il reste 70% de cette fiche de cours à lire
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.