Première > Physique-Chimie > Boost Physique-Chimie > Boost Physique-Chimie - Forces conservatives
Accède gratuitement à cette vidéo pendant 7 jours
Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !
On a une force $\overrightarrow{F}$ qui s’applique au point $M$ et qui se déplace entre les positions $A$ et $B$. On voit que le vecteur $\overrightarrow{AB}$ et le vecteur $\overrightarrow{F}$ forment un angle $\theta$.
Le travail de la force $\overrightarrow{F}$ sur le chemin $AB$ est égal à : $W_{AB}(\overrightarrow{F}) = \overrightarrow{F}.\overrightarrow{AB}=\lVert\overrightarrow{F}\rVert \times \lVert\overrightarrow{AB}\rVert \times cos(\theta)$
On a le point $M$ qui subit une force $\overrightarrow{P}$ et qui se déplace entre $A$ et $B$.
On a tracé, ici, deux chemins possibles : du point $A$ au point $B$ on peut passer par le chemin bleu noté $C1,$ mais aussi le chemin de $A$ vers $C$ puis vers $B$ noté $C2.$ Il y en a une infinité d’autres mais on en a représenté deux. Une force est dite conservative, si et seulement si, c’est une force dont le travail ne dépend pas du chemin suivi.
Quel que soit le chemin emprunté par le point $M$ pour aller du point $A$ au point $B,$ le travail sera le même.
Par exemple, $\overrightarrow{P} conservatif \iff W_{C1}(\overrightarrow{P} =W_{C2}(\overrightarrow{P}$
On a donc $\overrightarrow{P} = m.\overrightarrow{g}$, avec $\overrightarrow{P}$ la force en Newton (N), m la masse en kilogrammes (kg) et $\overrightarrow{g}$ la constante de pesanteur terrestre qui vaut 9,81 m.s-2.
On va s’intéresser au travail du poids sur les deux chemins précédents.
$W_{C1}(\overrightarrow{P}) = mg\times AB\times cos(\theta)$. L’angle $\theta$ est aussi l’angle $\widehat{CBA}$
On trouve alors une relation trigonométrique : $cos(\theta) = \dfrac{CB}{AB}$
On peut simplifier le calcul : $W_{C1}(\overrightarrow{P}) = mg\times CB$
Maintenant, intéressons-nous à l’autre chemin, en jaune : $W_{C2}(\overrightarrow{P}) = W_{AC}(\overrightarrow{P}) +W_{CB}(\overrightarrow{P})$
Sur $[AC],$ le travail du poids est nul. Sur $[CB]$, on voit que cette fois-ci, les deux vecteurs sont colinéaires. Ils sont parallèles et vont dans la même direction.
On peut écrire le travail du poids sur $[CB]$ comme égal à $mg \times -CB \times cos(0)$
Donc le travail du poids sur $[CB]$ vaut $W_{C2}(\overrightarrow{P}) = mg\times CB$
Ce qui est identique au travail du poids sur $C1$. C’est justement la définition de la force conservative : le travail ne dépend pas du chemin suivi. Le poids est une force conservative.
On peut noter $CB$ comme étant la différence de coordonnées entre les points $A$ et $B$ sur l’axe $z,$ qu’on peut en fait écrire : $W_{AB}(\overrightarrow{P}) = mg(z_A-z_B)$, avec $(z_A-z_B)$ la différence des altitudes.
Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.