MATHÉMATIQUES


Fonctions homographiques

 

Définition

 

Pour tout $x \in \mathbb{R} \backslash \left\{\dfrac{-d}{c}\right\}$, on peut définir une fonction homographique comme étant la fonction

$ f(x) = \dfrac{ax+b}{cx+d} $, où $a,b,c$ et $d$ sont des réels.  ($c$ et $d$ non tous nuls)

 

Autre notation

 

Pour tout $x \in \mathbb{R} \backslash \{\alpha\}$, on peut définir une fonction homographique comme étant la fonction

Il reste 70% de cette fiche de cours à lire

Cette fiche de cours est réservée uniquement à nos abonnés. N'attends pas pour en profiter, abonne-toi sur lesbonsprofs.com. Tu pourras en plus accéder à l'intégralité des rappels de cours en vidéo ainsi qu'à des QCM et des exercices d'entraînement avec corrigé en texte et en vidéo.