Primitives de fonctions ln, exponentielles. Décompositions

Les primitives

Primitive d’une fonction

Définition

Soit $f$ une fonction définie sur un intervalle $I$.

On dit qu’une fonction $F$ est une primitive de $f$ sur $I$ si et seulement si $F$ est dérivable sur $I$ et pour tout $x$ de $I$, $F'(x) = f(x)$.

 

Primitives usuelles

 

primitives_usuelles

Opérations sur les primitives - Exercice

Cherchons une primitive sur (mathbb{R}) de : (f(x) = x e^{x^2+ 1})

Étape 1 : On cherche les expressions de (u) et (u’) pour arriver à la forme (u’ e^u).
Étape 2 : On multiplie par 2 et par (frac{1}{2}) pour faire apparaître le “2” manquant.
Étape 3 : On définit la primitive grâce au cours.

Cherchons une primitive sur (mathbb{R}) de : (g(x) = \frac{6x + 3}{x^2 + x + 1})

Étape 1 : On factorise par 3 le numérateur pour faire apparaître (u’).
Étape 2 : On définit la primitive grâce au cours.