Terminale > Mathématiques > Suites numériques > Suites géométriques

SUITES GÉOMÉTRIQUES

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Les suites géométriques

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Définition

 

Soit $q$ un réel et $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles.

On dit que $(u_n)$ est une suite géométrique si, et seulement si :

Pour tout $n\in\mathbb{N}$ : $u_{n+1}=q\times u_n$

 

$ u_0 \underset{\times q}{\longrightarrow} u_1 \underset{\times q}{\longrightarrow} u_2 \underset{\times q}{\longrightarrow} \cdots \underset{\times q}{\longrightarrow} u_{n-1}\underset{\times q}{\longrightarrow} u_n \underset{\times q}{\longrightarrow} u_{n+1}$

On dit alors que $q$ est la raison de la suite géométrique $(u_n)$ et $u_0$ son premier terme.

 

Expression de $u_n$ en fonction de $n$

 

Soit $(u_n)$ une suite géométrique de raison $q$.


Si $u_0$ est le premier terme de la suite $(u_n)$, on peut démontrer facilement par récurrence que pour tout $n\in\mathbb{N}$,

$u_n=u_0\times q^n$.

On peut encore écrire cette égalité de la manière suivante :

$u_n=u_p\times q^{n-p}$ avec $p\leqslant n$.

 

Somme de termes consécutifs

 

On souhaite calculer la somme de termes consécutifs d'une suite géométrique $(u_n)$.

 

La somme se calcule de la manière suivante :

$\text{Somme}=\text{(1er terme)} \times \dfrac{1-q^{\text{nombre de termes}}}{1-q}$