Troisième > Mathématiques > Arithmétique > Nombres premiers, division euclidienne

NOMBRES PREMIERS, DIVISION EUCLIDIENNE

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Division euclidienne

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Division euclidienne

 

Définition

 

Un nombre entier est un nombre qui permet de compter un nombre d'entités par exemple (0; 1; 2, ...).

On considère deux nombres entiers $n$ et $d (\neq 0)$. 

La division euclidienne de $n$ par $d$ consiste à trouver deux nombres $q$ (le quotient) et $r$ (le reste) tels que $n = d \times q + r$ avec $r < d$.

Le nombre $n$ correspond au dividende, le nombre $d$ au diviseur.

b6dc4a799f349e6320fa67d83baa3c71ae9de4cc.png

Il s'agit en fait d'effectuer un partage équitable.

Par exemple, $n$ peut représenter le nombre de billes à répartir parmi $d$ élèves.

On souhaite que chacun en ait le même nombre $q$ et il restera des billes en une quantité $r$ qui ne seront pas distribuées. 

On impose également que le partage soit généreux, cela signifie que le reste est toujours plus petit que le diviseur ou encore $r < d$.

En effet, si il restait plus de billes que d'élèves, on pourrait encore donner des billes aux élèves sans qu'aucun d'eux ne soit lésé.

 

Exemple :

On considère que $n = 17$ et $d= 5$. 

On regarde la table de $5$ pour trouver le plus grand nombre $q$.

Ici, $q = 3$ ($5 \times 3 = 15$) car si on avait choisit $q = 4$, on aurait alors eu $4 \times 5 = 20 > 17 = n$ ce qui n'est pas possible. 

Ainsi, $17 = 5 \times 3 + 2$. 

d3de766347852751b879fa1aa9927ea5825e0287.png