Terminale > Mathématiques > Fonctions sinus et cosinus > L'incontournable du chapitre

L'INCONTOURNABLE DU CHAPITRE

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Étude de la fonction cosinus

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Etude de la fonction cosinus

 

Domaine de définition et dérivée

 

La fonction cosinus est définie sur $\mathbb{R}$.

Elle est, en outre, $2\pi$-périodique (ce qui signifie que pour tout $x\in\mathbb{R}, \cos(x+2\pi)=\cos(x)$)

et paire (pour tout $x\in\mathbb{R}, \cos(-x)=\cos(x)$) ce qui permet de restreindre son étude à $[0,\pi]$.

Son domaine de dérivabilité est $\mathbb{R}$ et pour tout $x\in\mathbb{R}, \cos'(x)=-\sin(x)$.

 

Variations sur $[0,\pi]$

 

Pour étudier les variations de la fonction cosinus, on étudie le signe de sa dérivée c'est-à-dire le signe de $-\sin(x)$ sur $[0,\pi]$.

 variations_cosinus

 

Représentation graphique

 

Courbe représentative de la fonction cosinus obtenue avec les propriétés de parité et de périodicité de la fonction:

 cosinus-graphique

 

Propriétés algébriques et autres formules

 

Pour tout $x\in\mathbb{R}$, $\cos^2(x)+\sin^2(x)=1$.

Pour tout $x\in\mathbb{R}$, $\cos(2x)=2\cos^2(x)-1$.

Pour tous $a,b$ réels, $\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)$.

Formule d'Euler : $\cos(\theta)= \dfrac{e^{i\theta}+e^{-i\theta}}{2}$, où $e^{i\theta}$ est le nombre complexe de module 1 et
d'argument $\theta$ : $e^{i\theta}=\cos ({\theta}) +i\sin({\theta})$.

$\cos(-x) =\cos(x)$

$\cos(x+\pi)= -\cos(x)$

$\cos(\frac{\pi}{2}-x)= \sin(x)$