Terminale > Mathématiques complémentaires > Probabilités - Lois discrètes > Loi géométrique

LOI GÉOMÉTRIQUE

Accède gratuitement à cette vidéo pendant 7 jours

Profite de ce cours et de tout le programme de ta classe avec l'essai gratuit de 7 jours !

Démarrer l'essai gratuit

Loi géométrique

Permalien

Télécharger la fiche de cours Les téléchargements sont réservés uniquements aux abonnés

Loi géométrique 

 

Définition :

 

On considère une épreuve de Bernoulli, qui est une épreuve possédant deux issues possibles (succès ou échec), dont la probabilité du succès vaut $p$.

Soit $X$ la variable aléatoire qui compte le nombre d'essais nécessaires jusqu'au premier succès.

On dit que $X$ suit la loi géométrique de paramètre $p$ et

$P(X = k) = p(1-p)^{k-1}$ pour $k$ entier naturel non nul.

On explique cette formule par le fait que l'on doit avoir $k - 1$ échecs pour obtenir le premier succès lors du $k$ essais.

Or la probabilité d'un échec vaut $1 - p$ et il n'existe qu'un chemin pour obtenir $k-1$ échecs puis un succès.

 

Propriété :

 

L'espérance vaut : 

$E(X) = \dfrac{1}{p}$

 

Exemple :

A l'entrainement au tennis, Nadal réussit $67$ % de ses premiers services en moyenne.

Soit $X$ la variable aléatoire donnant le nombre de services réalisés pour réussir son premier service.

1) Justifier que $X$ suit une loi géométrique et donner son paramètre

2) Déterminer la probabilité qu'il ait besoin de 2 essais ou moins pour réussir son premier service.

1) $X$ donne le nombre d'essais nécessaires pour obtenir un succès "réussir son service" de probabilité $p =0.67$ lorsque l'on réalise de manière indépendante une même expérience de Bernoulli (service).

Donc $X$ suit la loi géométrique de paramètre $p = 0.67$

2) La probabilité qu'il ait besoin de 2 essais ou moins correspond à la probabilité $P(X \leq 2)$.

Or $X$ est une variable aléatoire qui ne prend que des valeurs entières.

Ainsi :

$P(X \leq 2)= P(X=1) + P(X = 2) $

$P(X \leq 2)= 0.67 \times (1-0.67)^{1-1} + 0.67 \times (1-0.67)^{2-1}$

$P(X \leq 2)= 0.8911$